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Two comprehensive evaluation metrics, image perceptual quality based on target detectability (PQTD) and
perceptual quality based on scene understanding (PQSU), are proposed to measure image quality for visible
and infrared color fusion images of typical scenes. A psychophysical experiment is performed to explore the
relationship between conventional quality attributes and the proposed evaluation metrics. The prediction
models for PQTD and PQSU are derived by multiple linear regression statistical analyses. Results show
that the variation of PQTD can be predicted by sharpness and perceptual contrast between the target and
background, and that color harmony and sharpness can predict PQSU. The proposed evaluation metrics
and their prediction models provide a foundation for further developing objective quality evaluation of
color fusion images.
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Visible and infrared color image fusion combines two
source images into a single composite false-color im-
age that is suitable for special visual tasks. Many fu-
sion algorithms and systems have been successfully ap-
plied. At present, however, no generally accepted meth-
ods of color fusion image quality evaluation exist. Image
quality assessment has been investigated using subjec-
tive and objective approaches. Subjective approaches
evaluate the image quality based on subjective percep-
tion by observers, whereas the goal of objective image
quality assessment research is to design computational
models that can predict the perceived image quality ac-
curately and automatically. The numerical measure of
quality an algorithm provides should correlate well with
human subjectivity[1].

Many factors are able to influence perceptual image
quality. For true-color images, Choi et al. performed
a psychophysical experiment in which colorfulness, con-
trast, and naturalness were the key attributes control-
ling image quality[2]. Pedersen et al. found that color,
lightness, sharpness, contrast, physical attributes, and
artifacts were the most meaningful attributes for the
print image quality[3]. However, unlike true-color im-
ages, color-fused images contain dual-band information.
Thus, the purpose of image fusion is not to obtain the
color image that completely corresponds with the true-
color image of the same scene, but to improve the suit-
ability for special vision tasks (i.e., target detection and
scene understanding)[4]. Until recently, most subjective
evaluations have been investigated based on different vi-
sual tasks, such as target detection and recognition, scene
recognition, and situational awareness[5−7]. Shi et al.
presented three influence factors (i.e., target detection,
detail, and colorfulness) to evaluate the color fusion im-
age quality[8]. Thus far, however, no agreement on which
quality metric should be used to evaluate the quality of
visible and infrared color fusion images has been reached.
For the same image, perceptual quality assessment results
differ according to different visual tasks[9]. Therefore, to

evaluate the color fusion image quality comprehensively,
we propose two evaluation metrics: image perceptual
quality based on target detectability (PQTD) and per-
ceptual quality based on scene understanding (PQSU). A
psychophysical experiment was performed to explore the
relationship between common quality attributes (QAs)
and the proposed evaluation metrics. Multiple regres-
sion statistical analyses were conducted to establish pre-
diction models of QAs for PQSU and PQTD.

Both objective and subjective evaluations of image
quality are dependent on a number of QAs related to per-
ception, such as sharpness, contrast, and naturalness[10].
These QAs influence the overall image quality in different
ways, and studying their relationships would be helpful
to optimize the image quality model. The QAs selected
in the psychophysical experiment must be convenient for
modeling and quantization in order to further evaluate
the image quality objectively. According to specific ap-
plications of visible and infrared color fusion images and
the characteristics of fusion images, such as false color
and low resolution, four QAs were used in our subjective
assessment experiment. These four QAs have been pro-
posed as evaluation metrics in previous studies.

The perception contrast of the target and the back-
ground (PCTB) in a color image refers to the visibility
of color variation between the target and background re-
gions. Target detection for human eyes depends on per-
ception contrast of the target and background to a great
extent. The target can be detected easily by enhancing
the color contrast between the target and background[11].
The target detectability of color fusion images can be
predicted by measuring the contrast[12,13]. Many fac-
tors influence perception contrast at different levels, such
as human visual system, perceptual luminance variation,
chroma difference, and hue difference between target and
background. In this experiment, the target refers to the
hot target in the infrared source image. If a image con-
tained more than one target, observers were asked to
measure PCTB for all the targets comprehensively.
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Sharpness (S) is frequently used to describe the im-
age quality[3]. It consists of two concepts: resolution
and acutance. Resolution involves resolving detail, while
acutance involves transition of the edges. The percep-
tion of sharpness is related to the clarity of detail and
edge definition of an image[14]. In literature, sharpness
is linked with color[2], noise[15], contrast[16], and so on.

Color harmony (CH) has a high correlation with im-
age color preference evaluation for true-color images[17].
A generally accepted understanding of color harmony
is given by Burchett: “Colors seen together to produce
pleasing affective response are said to be in harmony”[18].
Color harmony can be influenced by many factors, such
as shape, area, and type of combination[18,19]. Pseudo-
colorization makes the fused image appear to be more or
less different from the real scene. In order to avoid visual
fatigue and negative psychological effects, color harmony
should be considered as a QA of great importance.

Color naturalness (CN) is defined as the degree of cor-
respondence between the image colors and memory col-
ors of real-life scenes. It is interpreted as the subjec-
tive impression of the fidelity of color rendering[20]. The
strong link between image quality and naturalness found
in experiments suggests that naturalness is an impor-
tant quality attribute in the color reproduction of natural
scene images[21]. People regard image quality as better
if the image colors are close to their long-term memory
colors[22].

In order to improve the target detectability of color fu-
sion images, color contrast between the target and back-
ground is often enhanced by making the target color
bright (intense red, for example). Therefore, color har-
mony and naturalness in this letter refer to color harmony
and naturalness of background in the fusion image with-
out consideration of the target color.

Clearly, the above four QAs describe image quality
from different aspects. The visible and infrared color
fusion image should be suited for special-purpose appli-
cations applied to improve target detection and scene un-
derstanding. Previous experimental results showed that,
compared with individual image modalities, the appro-
priate color fusion images could contribute more to tar-
get detection and scene understanding[5−7]. Therefore,
this letter proposes a comprehensive evaluation metric,
perceptual quality based on different visual tasks, which
contains two aspects: PQTD and PQSU.

a) PQTD. The experimental task required observers to
measure the detectability of hot targets in fusion images.
The suitability of the fusion image for fast and accurate
target detection is considered the most important factor
to measure the perceptual quality of the color fusion im-
age. If a image contained more than one target, observers
were asked to measure PQTD for all the targets compre-
hensively.

b) PQSU. The experimental task required observers to
evaluate the perceptual quality based on scene under-
standing according to sharpness and color, without con-
sidering target detectability. The suitability of the fusion
image for direct and accurate understanding of the image
scene is considered the most important factor to measure
the perceptual quality of the color fusion image.

To produce the test images, IR and visible images were
fused using the following eight methods: TNO fusion

scheme[23], MIT fusion scheme[24], BIT fusion scheme (in
YUV color space)[25], linear fusion scheme[26], steerable
pyramid based color fusion scheme[27], and three color-
transfer methods after the linear fusion (i.e., linear color
transfer in YUV space[28], and multi-resolution based
color transfer in YUV and RGB color space)[29]. The
three color-transfer methods were used to select three
different target images to obtain rich colors in the test
fusion images.

Improvement of scene perception for observers is one of
basic applications of color fusion images. The fusion im-
ages were classified by typical scene for perceptual qual-
ity evaluation to select suitable fusion schemes according
to different types of image scenes. In this study, the test
images were classified into three classes: Plants, Sea and
Sky, and Towns and Buildings. For each of the three typ-
ical scenes, seven sets of images were selected in the ex-
periment. Each set contained the resulting images of five
fusion methods and three color-transfer methods. Total
168 test images were contained in this study. In the 21
pairs of visible and infrared source images, 7 pairs were
provided by Morris et al[30]. The rest of the source im-
ages were obtained by our own fusion system, which is
comprised of an 8–14-µm wavelength band infrared de-
tector and a visible CCD. These images contained obvi-
ous hot targets and specific background that have char-
acteristics of the typical scene.

The experiments were conducted in a dark room, using
a characterized cathode ray tube (CRT) display [with
resolution of 1 024×768 (pixel)] for presenting the test
fusion images. The CRT, with a display peak white lu-
minance of 100 cd/m2, provided the only light source in
the room. The x, y chromaticity coordinates of the dis-
play’s white point were (0.314, 0.329), which are quite
close to that of the D65 (0.313, 0.329). To ensure pre-
cise color reproduction on the CRT display, the GOG
model[31] was implemented for conversion between the
tristimulus values and monitor RGB values. The GOG
model was tested for the display by means of CIELAB
color difference using 27 test colors (0, 128, and 255 dig-
ital counts for each channel of red, green, and blue) with
average color difference values of 1.8 for the CRT display.
Two minutes of adaptation time were given to each ob-
server. The viewing distance was 50 cm. The image size
was set to 320×240 pixels.

At least 15 observers should be used according
to recommended ITU-R of the subjective assessment
methodology[32]. Seventeen Chinese observers, compris-
ing nine males and eight females with normal vision and
who have passed Ishihara’s Tests for Color Deficiency,
participated in the experiment. Considering the char-
acteristics of night-vision-system users, the average age
of observers was 29 years (raging from 20 to 46). The
observers, who included three military personnel, had
different professional backgrounds but all have some
knowledge or experience of color night vision.

Before the experiment, instructions were given to
the observers, including the purpose and process of
the psychophysical experiment, detailed description and
definitions of all evaluation metrics, and the target and
scene content of each set of test images. Thus, observers
could rate the test images without any bias.
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In order to avoid the observer fatigue and interaction
between these QAs, the experiment was divided into six
sessions. In each session, observers assessed one of the
six aspects (PCTB, S, CH, CN, PQTD, and PQSU). For
each set of test images, a pair of visible and infrared
source images was presented first to help observers to
identify hot targets and understand scene contents, after
which the eight corresponding fusion images were simul-
taneously displayed in the middle of a gray background
(L∗=50) with random arrangement. To scale observer
perceptions of the six aspects, a categorical judgment
technique was adopted. Observers were asked to rate
each image using a seven-point verbally labeled category
scale. For example: “7” corresponded to “highest quality
imaginable,” “4” to “average quality,” and “1” to “lowest
quality imaginable.”

The different observers rated these six attributes for fu-
sion images of different scenes with different scale ranges.
To ensure that all the experimental data fell within a
specified rang, the scores of one set with eight test im-
ages were handled as a unit for each attribute. They were
transformed into [0, 1] by normalization as

zij =
yij − ymin

i

ymax
i − ymin

i

, (1)

where yij (i=1, 2, · · · , 21, j=1, 2, · · · , 8) represents the
experiment data; ymin

i and ymax
i are the lowest and high-

est value in the unit i, respectively; and zij is the nor-
malized score.

We collected and averaged the normalized scores of
the six attributes given by the observers and analyzed
their correlation. Table 1 shows the Pearson correlation
coefficient (r)[33] between each pair of attributes and the
result reaches significance level (P=0.000<0.05). The
result indicates a very high significance of correlation
between the scores of PQTD and PCTB, as well as a
high correlation between PQTD and S. The perceptual
quality based on scene understanding correlated strongly
to S, CH, and CN. It is proved a certain level of va-
lidity to explain image perceptual quality by the four
attributes. This study adopted the analytic method of
multiple linear regression to explore the influence of the
four QAs on comprehensive image quality based on vi-
sion tasks, PQTD, and PQSU.

Stepwise regression[34] was adopted to obtain the best
combination of the least variables for predicting image
perceptual quality. In stepwise regression, at each step,
the best variable is added to the model if its corre-
sponding F -test is significant (P60.05). Before the next
variable is added, however, the stepwise method takes

Table 1. Pearson Correlation Coefficients between
Each Pair of Attributes

PQTD PQSU PCTB S CH CN

PQTD 1

PQSU 0.550 1

PQTB 0.900 0.256 1

S 0.670 0.938 0.403 1

CH 0.479 0.973 0.184 0.895 1

CN 0.480 0.957 0.196 0.865 0.966 1

an additional look-back step to check all variables in-
cluded in the current model, and deletes any variable
that has a P -value greater than or equal to the 0.10 sig-
nificance criterion. Only after the necessary deletions are
accomplished can the procedure move to the next step
of adding another variable into the model. The step-
wise search continues until every variable in the model
is significant and every variable not in the model is in-
significant.

For explaining PQTD in all image categories, the ba-
sic stepwise regression procedure is as follows. Firstly,
select the PCTB most correlated with PQTD and ob-
tain the linear regression model 1 (Table 2). Check
this variable by F -test and determine whether it is sig-
nificant (P=0.000<0.05). Then, enter the independent
variable S, which is the best remaining variable. Check
all variables included in the current model and deter-
mine whether each reaches significant level. The other
attributes with no statistical significance are excluded,
and the regression model 2 (see Table 2) is obtained. The
t statistics can help determine the relative importance of
each variable in the model. PCTB was determined to
be the most important variable, followed by S. The vari-
ance inflation factor (VIF) of each included variable was
smaller than 10, implying the absence of any significant
multicollinearity problems. The regression equation can
be written as

PQTD = 0.714PCTB+0.314S−0.025(R2 = 0.921), (2)

where R2 is coefficient of determination that indicates
how much of the dependent variable, PQTD, can be
explained by the independent variables, PCTB and S.
In this case, 92.1% can be explained. The F -test was
highly significant (F=1080.487, P=0.000<0.05), indi-
cating that the model, as a whole, is significantly good
in predicting the variable PQTD.

In the same way, for explaining PQSU in all image
categories, CH was the first attribute selected, S was the
second, and CN was the final attribute selected in the cre-
ated regression models (see Table 3). In Model 3, because
the VIF values of CH and CN were 18.845 and 14.871,

Table 2. Regression Models for PQSU in All Image
Categories

Model B t Sig. (P ) VIF F Sig. (P ) R
2

1 PCTB 0.855 28.002 0.000 1.000 784.132 0.000 0.807

2 PCTB 0.714 33.265 0.000 1.194
1 080.487 0.000 0.921

S 0.314 16.307 0.000 1.194

Table 3. Regression Models for PQSU in All Image
Categories

Model B t Sig. (P ) VIF F Sig. (P ) R
2

1 CH 0.980 57.670 0.000 1.000 3 325.826 0.000 0.947

2 CH 0.675 23.345 0.000 5.032
2 692.790 0.000 0.970

S 0.341 11.804 0.000 5.032

3 CH 0.426 8.214 0.000 18.845

2 308.502 0.000 0.974S 0.341 12.711 0.000 5.032

CN 0.256 5.604 0.000 14.871
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respectively, which are greater than 10, multicollinear-
ity suggesting that a high degree of multicollinearity is
present. Furthermore, the collinearity analysis of Model
3 can be measured by a condition index (CI) greater than
15 (CI=21.9); therefore, multicollinearity is a concern.
A very strong correlation existed between CH and CN
(r=0.966). When observers evaluated color harmony of
the false-color fusion images, they considered, not only
the harmony of color combinations in the image, but
also the harmony between the color and the correspond-
ing scene content. Inevitably, color harmony of fusion
images was influenced by image content. By analyzing
the scores of CH and CN, the correspondence between
the image colors and memory colors of real-life scenes
was found to be one of important influential factors of
CH. However, the meaning of color harmony was more
abundant, which includes other factors besides color nat-
uralness, such as visual comfort[35]. Figure 1 presents two
fusion images of approximately equal mean scores for the
CN grading (GCN) but greatly different mean scores for
the CH grading (GCH). Figure 1(b) appears similar to
the scene of the previous evening and obtained high score
in CN grading; however, it is not as harmonious as Fig.
1(a). Figure 1(a) not only appears similar to the real-
life scene, but also produced pleasing affective response;
therefore, its CH grading score was very high. Com-
pared with CN and S, CH had the strongest correlation
with PQSU, suggesting that CH is the most important
attribute for explaining PQSU. In this letter, Model 2
in Table 3 was employed to predict PQSU, which can
avoid the multicollinearity problem and simplify the re-
gression model. The t statistics indicated that CH was
the most important influencing factor, followed by S, and
that both reached significant level (P=0.000<0.05). The
VIF of each included a variable is smaller than 10, imply-
ing that there was no significant multicollinearity prob-
lem. The regression equation can be written as

PQSU = 0.675CH + 0.341S− 0.014(R2 = 0.970), (3)

where R2 = 0.970 indicates that 97.0% of the dependent
variable, PQSU, can be explained by the independent
variables, CH and S, which are very large. The F -
test was highly significant (F=2692.790, P=0.00<0.05),
which indicates that the model, as a whole, is statisti-
cally significant.

Because images of different categories have different
characteristics, each attribute plays a different role in
different image categories. In order to obtain more suit-
able prediction models, the same statistical analysis was
conducted to each image category. The prediction mod-
els used for PQTD and PQSU of the three typical scenes
were

Fig. 1. Two fusion images of approximately equal mean scores
of GCN but greatly different mean scores of GCH.

Plants

PQTD = 0.768PCTB+0.246S−0.030(R2 = 0.935), (4)

PQSU = 0.532CH + 0.463S− 0.012(R2 = 0.944). (5)

Sea and Sky

PQTD= 0.531PCTB+0.447S−0.010(R2 = 0.928), (6)

PQSU = 0.823CH + 0.201S− 0.015(R2 = 0.982). (7)

Towns and Buildings

PQTD = 0.815PCTB+0.224S−0.024(R2 = 0.952), (8)

PQSU = 0.679CH + 0.347S− 0.015(R2 = 0.988). (9)

Each of independent variables reaches significant level
(P=0.000<0.05). No significant multicollinearity prob-
lem exists in the above models. Each model, as a whole,
is statistically significant, and their prediction powers
are all above 92%. Thus, PQTD and PQSU can be pre-
dicted by these independent variables very well.

For fusion images of three typical scenes, PCTB was
the most important influencing attribute, followed by S
in the prediction models for PQTD. For the category of
Sea and Sky, S represented considerable higher anticipa-
tion in the PQTD model compared with the other scene
categories because the fusion images of Sea and Sky con-
tained large uniform background areas; thus, observers
could detect the edges of targets easily. Furthermore, the
perception of sharpness is related to the clarity of detail
and edge definition in images, which is extremely helpful
in improving target detectability. Therefore, sharpness
also had a great influence on PQTD for fusion images in
the category of Sea and Sky.

For predicting color fusion image PQSU in the three
categories, CH was the first important attribute and
S was the second in the created regression models.
Specifically, in the category of Sea and Sky, CH rep-
resented observably higher anticipation to the scores of
PQSU compared with S. Because fusion images in the
category of Sea and Sky contained fewer details, image
scenes were easily recognized by their color and observers
were insensitive to sharpness changes. CH was much
more important than S for predicting color fusion image
PQSU in the category of Sea and Sky. Whereas, in the
category of Plants, CH represented only a little higher
anticipation to the scores of PQSU compared with S. Be-
cause fusion images in the category of Plants contained
more details, the influence of S on PQSU was nearly
equal in significance as CH.

In conclusion, perceptual quality based on visual tasks
is proposed to measure color fusion image quality com-
prehensively, including two submetrics: PQTD and
PQSU. A psychophysical experiment is performed to
explore the relationship between the QAs and the pro-
posed metrics. Multiple regression statistical analyses
are conducted to derive prediction models for PQTD
and PQSU. The result showed that PCTB and S are
significantly good in predicting PQTD. CH and S are
included in the model that predicted PQSU very well. In
the three image categories, the influence levels of PCTB,
S, and CH on PQTD and PQSU are different. The
proportional coefficients in prediction models for PQTD
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and PQSU are different; however, the basic forms of
prediction models are unchanged.

PQTD and PQSU are able to measure color fusion im-
age quality comprehensively; however, they are difficult
to model and quantize directly. The four QAs (i.e.,
PCTB, S, CH, and CN) are able to describe image qual-
ity from different aspects successfully. These QAs are
not only suitable for image quality subjective evaluation,
they are also convenient for computation and quantiza-
tion. Therefore, the result of our research provides a way
to solve the difficult problem on how to evaluate color
fusion image quality based on visual tasks objectively.
In other words, through establishing objective evalua-
tion models of PCTB, S, and CH, objective evaluation of
color fusion image quality based on vision tasks can be
achieved in combination with the corresponding predic-
tion model proposed in this letter according to different
types of image scenes.
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